

156 | P a g e

International Journal of Innovative Research in Engineering
Volume 4, Issue 2 (March-April 2023), PP: 156-165.
www.theijire.com ISSN No: 2582-8746

PACK: Prediction-Based Cloud Bandwidth and Cost Reduction
System

Archana prashant Borlepwar1
,
 Rupali Subhash Pophale2

1,2Lecture Computer Department, CSMSS College of Polytechnic, Aurangabad,India.

How to cite this paper:
Archana prashant Borlepwar1

,
 Rupali Subhash

Pophale2
,
 “PACK: Prediction-Based Cloud

Bandwidth and Cost Reduction System”,
IJIRE-V4I02-156-165.

Copyright © 2023 by author(s) and

5th Dimension Research Publication.
This work is licensed under the Creative
Commons Attribution International License
(CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Abstract: In this paper, we present PACK (Predictive ACKs), a novel end-to-end traffic

redundancy elimination (TRE) system, designed for cloud computing customers. Cloud-based

TRE needs to apply a judicious use of cloud resources so that the bandwidth cost reduction

combined with the additional cost of TRE computation and storage would be optimized.

PACK’s main advantage is its capability of offloading the cloud-server TRE effort to end

clients, thus minimizing the processing costs induced by the TRE algorithm. Unlike previous

solutions, PACK does not require the server to continuously maintain clients’ status. This

makes PACK very suitable for pervasive computation environments that combine client

mobility and server migration to maintain cloud elasticity. PACK is based on a novel TRE

technique, which allows the client to use newly received chunks to identify previously received

chunk chains, which in turn can be used as reliable predictors to future transmitted chunks. We

present a fully functional PACK implementation, transparent to all TCP-based applications

and network devices. Finally, we analyze PACK benefits for cloud users, using traffic traces

from various sources.

Index Terms: caching, cloud computing, network optimization, traffic redundancy
elimination.

I.INTRODUCTION

 LOUD computing offers its customers an economical and convenient pay-as-you-go service model, known also as

usage-based pricing [2]. Cloud customers1pay only for the actual use of computing resources, storage, and bandwidth,

according to their changing needs, utilizing the cloud’s scalable and elastic computational capabilities. In particular, data

transfer costs (i.e., bandwidth) is an important issue when trying to minimize costs [2]. Consequently, cloud customers,

applying a judicious use of the cloud’s resources, are motivated to use various traffic reduction techniques, in particular traffic

redundancy elimination (TRE), for reducing bandwidth costs.

 Traffic redundancy stems from common end-users’ activities, such as repeatedly accessing, downloading, uploading

(i.e., backup), distributing, and modifying the same or similar information items (documents, data, Web, and video). TRE is

used to eliminate the transmission of redundant content and, therefore, to significantly reduce the network cost. In most

common TRE solutions, both the sender and the receiver examine and compare signatures of data chunks, parsed according to

the data content, prior to their transmission. When redundant chunks are detected, the sender replaces the transmission of each

redundant chunk with its strong signature[3]–[5]. Commercial TRE solutions are popular at enterprise networks, and involve

the deployment of two or more proprietary-protocol, state synchronized middle-boxes at both the intranet entry points of data

centres and branch offices, eliminating repetitive traffic between them (e.g., Cisco [6], Riverbed [7], Quantum [8], Juniper [9],

Blue Coat [10], Expand Networks [11], and F5 [12]).

 While proprietary middle-boxes are popular point solutions within enterprises, they are not as attractive in a cloud

environment. Cloud providers cannot benefit from a technology whose goal is to reduce customer bandwidth bills, and thus are

not likely to invest in one. The rise of “on-demand” work spaces, meeting rooms, and work-from-home solutions [13] detaches

the workers from their offices. In such a dynamic work environment, fixed-point solutions that require a client-side and a

server-side middle-box pair become ineffective. On the other hand, cloud-side elasticity motivates work distribution among

servers and migration among data centres. Therefore, it is commonly agreed that a universal, software-based, end-to-end TRE

is crucial in today’s pervasive environment [14], [15]. This enables the use of a standard protocol stack and makes a TRE

within end-to-end secured traffic (e.g., SSL) possible.

 Current end-to-end TRE solutions are sender-based. In the case where the cloud server is the sender, these solutions

require that the server continuously maintain clients’ status.

 We show here that cloud elasticity calls for a new TRE solution. First, cloud load balancing and power optimizations

may lead to a server-side process and data migration environment, in which TRE solutions that require full synchronization

between the server and the client are hard to accomplish or may lose efficiency due to lost synchronization. Second, the

popularity of rich media that consume high bandwidth motivates content distribution network (CDN) solutions, in which the

service point for fixed and mobile users may change dynamically according to the relative service point locations and loads.

http://creativecommons.org/licenses/by/4.0/

PACK: Prediction-Based Cloud Bandwidth and Cost Reduction System

157 | P a g e

Moreover, if an end-to-end solution is employed, its additional computational and storage costs at the cloud side should be

weighed against its bandwidth saving gains.

 Clearly, a TRE solution that puts most of its computational effort on the cloud side2may turn to be less cost-effective

than the one that leverages the combined client-side capabilities. Given an end-to-end solution, we have found through our

experiments that sender-based end-to-end TRE solutions [4], [15] add a considerable load to the servers, which may eradicate

the cloud cost saving addressed by the TRE in the first place. Our experiments further show that current end-to-end solutions

also suffer from the requirement to maintain end-to-end synchronization that may result in degraded TRE efficiency.

 In this paper, we present a novel receiver-based end-to-end TRE solution that relies on the power of predictions to

eliminate redundant traffic between the cloud and its end-users. In this solution, each receiver observes the incoming stream

and tries to match its chunks with a previously received chunk chain or a chunk chain of a local file. Using the long-term

chunks’ metadata information kept locally, the receiver sends to the server predictions that include chunks’ signatures and

easy-to-verify hints of the sender’s future data. The sender first examines the hint and performs the TRE operation only on a

hint-match. The purpose of this procedure is to avoid the expensive TRE computation at the sender side in the absence of

traffic redundancy. When redundancy is detected, the sender then sends to the receiver only the ACKs to the predictions,

instead of sending the data.

On the receiver side, we propose a new computationally lightweight chunking (fingerprinting) scheme termed PACK chunking.

PACK chunking is a new alternative for Rabin fingerprinting traditionally used by RE applications. Experiments show that our

approach can reach data processing speeds over 3 Gb/s, at least 20% faster than Rabin fingerprinting.

 Offloading the computational effort from the cloud to a large group of clients forms a load distribution action, as each

client processes only its TRE part. The receiver-based TRE solution addresses mobility problems common to quasi-mobile

desktop/ laptops computational environments. One of them is cloud elasticity due to which the servers are dynamically

relocated around the federated cloud, thus causing clients to interact with multiple changing servers. Another property is IP

dynamics, which compel roaming users to frequently change IP addresses. In addition to the receiver-based operation, we also

suggest a hybrid approach, which allows a battery-powered mobile device to shift the TRE computation overhead back to the

cloud by triggering a sender-based end-to-end TRE similar to [15].

 To validate the receiver-based TRE concept, we implemented, tested, and performed realistic experiments with PACK

within a cloud environment. Our experiments demonstrate a cloud cost reduction achieved at a reasonable client effort while

gaining additional bandwidth savings at the client side. The implementation code, over 25 000 lines of C and Java, can be

obtained from [16]. Our implementation utilizes the TCP Options field, supporting all TCP-based applications such as Web,

video streaming, P2P, e-mail, etc.

 In addition, we evaluate our solution and compare it to previous end-to-end solutions using terabytes of real video

traffic consumed by 40 000 distinct clients, captured within an ISP, and traffic obtained in a social network service for over a

month. We demonstrate that our solution achieves 30% redundancy elimination without significantly affecting the

computational effort of the sender, resulting in a 20% reduction of the overall cost to the cloud customer.

 This paper is organized as follows. Section II reviews existing TRE solutions. In Section III, we present our receiver-

based TRE solution and explain the prediction process and the prediction-based TRE mechanism. In Section IV, we present

optimizations to the receiver-side algorithms. Section V evaluates data redundancy in a cloud and compares PACK to sender-

based TRE. Section VI details our implementation and discusses our experiments and results.

II.RELATED WORK

 Several TRE techniques have been explored in recent years. A protocol-independent TRE was proposed in [4]. The

paper describes a packet-level TRE, utilizing the algorithms presented in [3].

 Several commercial TRE solutions described in [6] and [7] have combined the sender-based TRE ideas of [4] with the

algorithmic and implementation approach of [5] along with protocol specific optimizations for middle-boxes solutions. In

particular, [6] describes how to get away with three-way handshake between the sender and the receiver if a full state

synchronization is maintained.

 References [17] and [18] present redundancy-aware routing algorithm. These papers assume that the routers are

equipped with data caches, and that they search those routes that make a better use of the cached data.

 A large-scale study of real-life traffic redundancy is presented in [19], [20], and [14]. In the latter, packet-level TRE

techniques are compared [3],[21]. Our paper builds on their finding that “an end to end redundancy elimination solution, could

obtain most of the middle-box’s bandwidth savings,” motivating the benefit of low cost software end-to-end solutions.

 Wanax [22] is a TRE system for the developing world where storage and WAN bandwidth are scarce. It is a software-

based middle-box replacement for the expensive commercial hardware. In this scheme, the sender middle-box holds back the

TCP stream and sends data signatures to the receiver middle-box. The receiver checks whether the data is found in its local

cache. Data chunks that are not found in the cache are fetched from the sender middle-box or a nearby receiver middle-box.

Naturally, such a scheme incurs a three-way-handshake latency for non cached data.

 End RE [15] is a sender-based end-to-end TRE for enterprise networks. It uses a new chunking scheme that is faster

than the commonly used Rabin fingerprint, but is restricted to chunks as small as 32–64 B. Unlike PACK, EndRE requires the

server to maintain a fully and reliably synchronized cache for each client. To adhere with the server’s memory requirements,

these caches are kept small (around 10 MB per client), making the system inadequate for medium-to-large content or long-term

redundancy. End RE is server-specific, hence not suitable for a CDN or cloud environment.

PACK: Prediction-Based Cloud Bandwidth and Cost Reduction System

158 | P a g e

Fig. 1. From stream to chain.

 To the best of our knowledge, none of the previous works have addressed the requirements for a cloud-computing-

friendly, end-to-end TRE, which forms PACK’s focus.

III.PACK ALGORITHM
 For the sake of clarity, we first describe the basic receiver driven operation of the PACK protocol. Several

enhancements and optimizations are introduced in Section IV.

 The stream of data received at the PACK receiver is parsed to a sequence of variable-size, content-based signed

chunks similar to [3] and [5]. The chunks are then compared to the receiver local storage, termed chunk store. If a matching

chunk is found in the local chunk store, the receiver retrieves the sequence of subsequent chunks, referred to as a chain, by

traversing the sequence of LRU chunk pointers that are included in the chunks’ metadata. Using the constructed chain, the

receiver sends a prediction to the sender for the subsequent data. Part of each chunk’s prediction, termed a hint, is an easy-to-

compute function with a small-enough false-positive value, such as the value of the last byte in the predicted data or a byte-

wide XOR checksum of all or selected bytes. The prediction sent by the receiver includes the range of the predicted data, the

hint, and the signature of the chunk. The sender identifies the predicted range in its buffered data and verifies the hint for that

range. If the result matches the received hint, it continues to perform the more computationally intensive SHA-1 signature

operation. Upon a signature match, the sender sends a confirmation message to the receiver, enabling it to copy the matched

data from its local storage.

A. Receiver Chunk Store

 PACK uses a new chains scheme, described in Fig. 1, in which chunks are linked to other chunks according to their

last received order. The PACK receiver maintains a chunk store, which is a large size cache of chunks and their associated

metadata. Chunk’s metadata includes the chunk’s signature and a (single) pointer to the successive chunk in the last received

stream containing this chunk. Caching and indexing techniques are employed to efficiently maintain and retrieve the stored

chunks, their signatures, and the chains formed by traversing the chunk pointers.

 When the new data are received and parsed to chunks, the receiver computes each chunk’s signature using SHA-1. At

this point, the chunk and its signature are added to the chunk store. In addition, the metadata of the previously received chunk

in the same stream is updated to point to the current chunk.

 The unsynchronized nature of PACK allows the receiver to map each existing file in the local file system to a chain of

chunks, saving in the chunk store only the metadata associated with the chunks.3Using the latter observation, the receiver can

also share chunks with peer clients within the same local network utilizing a simple map of network drives.

The utilization of a small chunk size presents better redundancy elimination when data modifications are fine-grained, such as

sporadic changes in an HTML page. On the other hand, the use of smaller chunks increases the storage index size, memory

usage, and magnetic disk seeks. It also increases the transmission overhead of the virtual data exchanged between the client

and the server.

 Unlike IP-level TRE solutions that are limited by the IP packet size (B), PACK operates on TCP streams and

can therefore handle large chunks and entire chains. Although our design permits each PACK client to use any chunk size, we

recommend an average chunk size of 8 kB (see Section VI).

B. Receiver Algorithm

 Upon the arrival of new data, the receiver computes the respective signature for each chunk and looks for a match in

its local chunk store. If the chunk’s signature is found, the receiver determines whether it is a part of a formerly received chain,

using the chunks’ metadata. If affirmative, the receiver sends a prediction to the sender for several next expected chain chunks.

The prediction carries a starting point in the byte stream (i.e., offset) and the identity of several subsequent chunks (PRED

command).

 Upon a successful prediction, the sender responds with a PRED-ACK confirmation message. Once the PRED-ACK

message is received and processed, the receiver copies the corresponding data from the chunk store to its TCP input buffers,

placing it according to the corresponding sequence numbers. At this point, the receiver sends a normal TCP ACK with the next

expected TCP sequence number. In case the prediction is false, or one or more predicted chunks are already sent, the sender

continues with normal operation, e.g., sending the raw data, without sending a PRED-ACK message.

PACK: Prediction-Based Cloud Bandwidth and Cost Reduction System

159 | P a g e

1. if segment carries payload data then

2. calculate chunk

3. if reached chunk boundary then

4. activate predAttempt()

5. end if

6. else if PRED-ACK segment then

7. process Pred Ack()

8. activate pred Attempt()

9. end if

1. if received chunk matches one in chunk store then

2. if found Chain(chunk) then

3. prepare PREDs

4. send single TCP ACK with PREDs according to

 Options free space

5. exit

6. end if

7. else

8. store chunk

9. link chunk to current chain

10. end if

3. put data in TCP input buffer

4. end for

C. Sender Algorithm

 When a sender receives a PRED message from the receiver, it tries to match the received predictions to its buffered

(yet to be sent) data. For each prediction, the sender determines the corresponding TCP sequence range and verifies the hint.

Upon a hint match, the sender calculates the more computationally intensive SHA-1 signature for the predicted data range and

compares the result to the signature received in the PRED message. Note that in case the hint does not match, a

computationally expansive operation is saved. If the two SHA-1 signatures match, the sender can safely assume that the

receiver’s prediction is correct. In this case, it replaces the corresponding outgoing buffered data with a PRED-ACK message.

Fig. 2 illustrates the sender operation using state machines. Fig. 2(a) describes the parsing of a received PRED command. Fig.

2(b) describes how the sender attempts to match a predicted range to its outgoing data. First, it finds out if this range has been

already sent or not. In case the range has already been acknowledged, the corresponding prediction is discarded. Otherwise, it

tries to match the prediction to the data in its outgoing TCP buffers.

D. Wire Protocol

 In order to conform with existing firewalls and minimize overheads, we use the TCP Options field to carry the PACK

wire protocol. It is clear that PACK can also be implemented above the TCP level while using similar message types and

control fields.

 Fig. 3 illustrates the way the PACK wire protocol operates under the assumption that the data is redundant. First, both

sides enable the PACK option during the initial TCP handshake by

11. send TCP ACK only

Proc. 3: processPredAck()

1. for all offset PRED-ACK do
2. read data from chunk store

Proc. 2: predAttempt()

Proc. 1: Receiver Segment Processing

PACK: Prediction-Based Cloud Bandwidth and Cost Reduction System

160 | P a g e

Fig. 2. Sender algorithms. (a) Filling the prediction queue. (b) Processing the prediction queue and sending PRED-ACK or raw data.

IV.OPTIMIZATIONS

 For the sake of clarity, Section III presents the most basic version of the PACK protocol. In this section, we describe

additional options and optimizations.

A. Adaptive Receiver Virtual Window

 PACK enables the receiver to locally obtain the sender’s data when a local copy is available, thus eliminating the need

to send this data through the network. We term the receiver’s fetching of such local data as the reception of virtual data.

 When the sender transmits a high volume of virtual data, the connection rate may be, to a certain extent, limited by the

number of predictions sent by the receiver. This, in turn, means that the receiver predictions and the sender confirmations

should be expedited in order to reach high virtual data rate. For example, in case of a repetitive success in predictions, the

receiver’s side algorithm may become optimistic and gradually increase the ranges of its predictions, similarly to the TCP rate

adjustment procedures.

 PACK enables a large prediction size by either sending several successive PRED commands or by enlarging PRED

command range to cover several chunks.

PACK enables the receiver to combine several chunks into a single range, as the sender is not bounded to the anchors

originally used by the receiver’s data chunking algorithm. The combined range has a new hint and a new signature that is an

SHA-1 of the concatenated content of the chunks.

Upon the first chunk match, the receiver sends predictions limited to its initial virtual window. It is likely that, before the

predictions arrive at the sender, some of the corresponding real data is already transmitted from it. When the real data arrives,

the receiver can partially confirm its prediction and increase the virtual window. Upon getting PRED-ACK confirmations from

the sender, the receiver also increases the virtual window. This logic resembles the slow-start part of the TCP rate control

algorithm. When a mismatch occurs, the receiver switches back to the initial virtual window.

Proc. 4 describes the advanced algorithm performed at the receiver’s side. The code at lines 2–8 describes PACK behavior

when a data segment arrives after its prediction was sent and the virtual window is doubled. Proc. 5 describes the reception of a

successful acknowledgement message (PRED-ACK) from the sender. The receiver reads the data from the local chunk store. It

then modifies the next byte sequence number to the last byte of the redundant data that has just been read plus one, and sends

the next TCP ACK, piggybacked with the new prediction. Finally, the virtual window is doubled.

10. if found Chain(chunk) then

11. {new code for Adaptive}

12. prepare PREDs according to pred Size

13. send TCP ACKs with all PREDs

14. exit

15. end if

16. else

17. store chunk

18. append chunk to current chain

19. end if

PACK: Prediction-Based Cloud Bandwidth and Cost Reduction System

161 | P a g e

3. put data in TCP input buffer

4. end for

5. {new code for Adaptive}

6. Pred Size Exponent()

 The size increase of the virtual window introduces a tradeoff in case the prediction fails from some point on. The code

in Proc. 4, line 6, describes the receiver’s behavior when the arriving data does not match the recently sent predictions. The

new received chunk may, of course, start a new chain match. Following the reception of the data, the receiver reverts to the

initial virtual window (conforming to the normal TCP receiver window size) until a new match is found in the chunk store.

Note that even a slight change in the sender’s data, compared to the saved chain, causes the entire prediction range to be sent to

the receiver as raw data. Hence, using large virtual windows introduces a tradeoff between the potential rate gain and the

recovery effort in the case of a missed prediction.

B. Cloud Server as a Receiver

 In a growing trend, cloud storage is becoming a dominant player [23], [24]—from backup and sharing services [25] to

the American National Library [26], and e-mail services [27], [28]. In many of these services, the cloud is often the receiver of

the data.

 If the sending client has no power limitations, PACK can work to save bandwidth on the upstream to the cloud. In

these cases, the end-user acts as a sender, and the cloud server is the receiver. The PACK algorithm need not change. It does

require, however, that the cloud server—like any PACK receiver—maintain a chunk store.

C. Hybrid Approach

 PACK’s receiver-based mode is less efficient if changes in the data are scattered. In this case, the prediction

sequences are frequently interrupted, which, in turn, forces the sender to revert to raw data transmission until a new match is

found at the receiver and reported back to the sender. To that end, we present the PACK hybrid mode of operation, described

in Proc. 6 and Proc. 7. When PACK recognizes a pattern of dispersed changes, it may select to trigger a sender-driven

approach in the spirit of [4], [6], [7], and [18].

Proc. 6: Receiver Segment Processing Hybrid—obsoletes

Proc. 1

1. if segment carries payload data then

2. calculate chunk

3. if reached chunk boundary then

4. activate predAttempt()

5. {new code for Hybrid}

6. if detected broken chain then

7. calcDispersion(255)

8. else

9. calcDispersion(0)

10. end if

11. end if

12. else if PRED-ACK segment then

13. process PredAck()

14. activate predAttempt()

20. send TCP ACK only

Proc. 5: processPredAckAdaptiv e()—obsoletes Proc. 3

1. for all offset PRED-ACK do
2. read data from disk

PACK: Prediction-Based Cloud Bandwidth and Cost Reduction System

162 | P a g e

3. put data in TCP input buffer

4. {new code for Hybrid}

5. for all chunk offset do

6. calcDispersion(0)

7. end for

8. end for

 However, as was explained earlier, we would like to revert to the sender-driven mode with a minimal computational

and buffering overhead at the server in the steady state. Therefore, our approach is to first evaluate at the receiver the need for

a sender-driven operation and then to report it back to the sender. At this point, the sender can decide if it has enough

resources to process a sender-driven TRE for some of its clients. To support this enhancement, an additional command

(DISPER) is introduced. Using this command, the receiver periodically sends its estimated level of dispersion, ranging from 0

for long smooth chains, up to 255.

Table I

Data And Pack’s Results of 24 H you tube Traffic Trace

PACK computes the data dispersion value using an exponential smoothing function

(1)

is set to 0 when a chain break is detected, and 255 otherwise. where

V.IMPLEMENTATION

 In this section, we present PACK implementation, its performance analysis, and the projected server costs derived

from the implementation experiments.

 Our implementation contains over 25 000 lines of C and Java code. It runs on Linux with Netfilter Queue [30]. Fig.

10 shows the PACK implementation architecture. At the server side, we use an Intel Core 2 Duo 3 GHz, 2 GB of RAM, and a

WD1600AAJS SATA drive desktop. The clients laptop machines are based on an Intel Core 2 Duo 2.8 GHz, 3.5 GB of RAM,

and a WD2500BJKT SATA drive.

 Our implementation enables the transparent use of the TRE at both the server and the client. PACK receiver–sender

protocol is embedded in the TCP Options field for low overhead and compatibility with legacy systems along the path. We

keep the genuine operating systems’ TCP stacks intact, allowing a seamless integration with all applications and protocols

above TCP.

 Chunking and indexing are performed only at the client’s side, enabling the clients to decide independently on their

preferred chunk size. In our implementation, the client uses an average chunk size of 8 kB. We found this size to achieve high

TRE hit-ratio in the evaluated datasets, while adding only negligible overheads of 0.1% in metadata storage and 0.15% in

predictions bandwidth.

 For the experiments held in this section, we generated a workload consisting of Section V datasets: IMAP e-mails,

HTTP videos, and files downloaded over FTP. The workload was then loaded to the server and consumed by the clients. We

sampled the machines’ status every second to measure real and virtual traffic volumes and CPU utilization.

A. Server Operational Cost

 We measured the server performance and cost as a function of the data redundancy level in order to capture the effect

of the TRE mechanisms in real environment. To isolate the TRE operational cost, we measured the server’s traffic volume and

CPU utilization at maximal throughput without operating a TRE. We then used these numbers as a reference cost, based on

present Amazon EC2 [29] pricing. The server operational cost is composed of both the network traffic volume and the CPU

utilization, as derived from the EC2 pricing.

15. end if

Proc. 7: Process PredAckHybrid()—obsoletes Proc. 3

1. for all offset PRED-ACK do
2. read data from disk

is a smoothing factor. The value

PACK: Prediction-Based Cloud Bandwidth and Cost Reduction System

163 | P a g e

 We constructed a system consisting of one server and seven clients over a 1-Gb/s network. The server was configured

to provide a maximal throughput of 50 Mb/s per client. We then measured three different scenarios: a baseline no-TRE

operation, PACK, and a sender-based TRE similar to EndRE’s Chunk Match [15], referred to as End RE-like. For the End RE-

like case, we accounted for the SHA-1 calculated over the entire outgoing traffic, but did not account for the chunking effort.

In the case of End RE-like, we made the assumption of unlimited buffers at both the server and client sides to enable the same

long-term redundancy level and TRE ratio of PACK.

 Fig. 11 presents the overall processing and networking cost for traffic redundancy, relative to no-TRE operation. As

the redundancy grows, the PACK server cost decreases due to the bandwidth saved by unsent data. However, the End RE-like

server does not gain a significant cost reduction since the SHA-1 operations are performed over nonredundant data as well.

Note that at above 25% redundancy, which is common to all reviewed datasets, the PACK operational cost is at least 20%

lower than that of End RE-like.

B. PACK Impact on the Client CPU

 To evaluate the CPU effort imposed by PACK on a client, we measured a random client under a scenario similar to

the one used for measuring the server’s cost, only this time the cloud server streamed videos at a rate of 9 Mb/s to each client.

Such a speed throttling is very common in real-time video servers that aim to provide all clients with stable bandwidth for

smooth view.

 Table IV summarizes the results. The average PACK-related CPU consumption of a client is less than 4% for 9-Mb/s

video with 36.4% redundancy.

 Fig. 12(a) presents the client CPU utilization as a function of the real incoming traffic bandwidth. Since the client

chunks the arriving data, the CPU utilization grows as more real traffic enters the client’s machine. Fig. 12(b) shows the client

CPU utilization as a function of the virtual traffic bandwidth. Virtual traffic arrives in the form of prediction approvals from

the sender and is limited to a rate of 9 Mb/s by the server’s throttling. The approvals save the client the need to chunk data or

sign the chunks and enable him to send more predictions based on the same chain that was just used successfully. Hence, the

more redundancy is found, the less CPU utilization incurred by PACK.

Table IV

Client Cpu Utilization When Streaming 9-Mb/S Video With And Without Pack

C. Chunking Scheme
 Our implementation employs a novel computationally lightweight chunking (fingerprinting) scheme, termed PACK

chunking. The scheme, presented in Proc. 8 and illustrated in Fig. 13, is an XOR-based rolling hash function, tailored for fast

TRE chunking. Anchors are detected by the mask in line 1 that provides on average 8-kB chunks. The mask, as shown in Fig.

13, was chosen to consider all the 48 B in the sliding

8. end if

9. end for

PACK: Prediction-Based Cloud Bandwidth and Cost Reduction System

164 | P a g e

D. Pack Messages Format

 In our implementation, we use two currently unused TCP option codes, similar to the ones defined in SACK [32]. The

first one is an enabling option PACK permitted sent in a SYN segment to indicate that the PACK option can be used after the

connection is established. The other one is a PACK message that may be sent over an established connection once permission

has been granted by both parties. A single PACK message, piggybacked on a single TCP packet, is designed to wrap and carry

multiple PACK commands, as illustrated in Fig. 14. This not only saves message overhead, but also copes with security

network devices (e.g., firewall) that tend to change TCP options order [33]. Note that most TCP options are only used at the

TCP initialization period, with several exceptions such as SACK [32] and timestamps [34], [33]. Due to the lack of space,

additional implementation details are left out and are available in [16].

VI.CONCLUSION

 Cloud computing is expected to trigger high demand for TRE solutions as the amount of data exchanged between the

cloud and its users is expected to dramatically increase. The cloud environment redefines the TRE system requirements,

making proprietary middle-box solutions inadequate. Consequently, there is a rising need for a TRE solution that reduces the

cloud’s operational cost while accounting for application latencies, user mobility, and cloud elasticity.

 In this paper, we have presented PACK, a receiver-based, cloud-friendly, end-to-end TRE that is based on novel

speculative principles that reduce latency and cloud operational cost. PACK does not require the server to continuously

maintain clients’ status, thus enabling cloud elasticity and user mobility while preserving long-term redundancy. Moreover,

PACK is capable of eliminating redundancy based on content arriving to the client from multiple servers without applying a

three-way handshake.

 Two interesting future extensions can provide additional benefits to the PACK concept. First, our implementation

maintains chains by keeping for any chunk only the last observed subsequent chunk in an LRU fashion. An interesting

extension to this work is the statistical study of chains of chunks that would enable multiple possibilities in both the chunk

order and the corresponding predictions. The system may also allow making more than one prediction at a time, and it is

enough that one of them will be correct for successful traffic elimination. A second promising direction is the mode of

operation optimization of the hybrid sender–receiver approach based on shared decisions derived from receiver’s power or

server’s cost changes.

References
[1] E. Zohar, I. Cidon, and O. Mokryn, “The power of prediction: Cloud bandwidth and cost reduction,” in Proc. SIGCOMM, 2011, pp.

86–97.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A

view of cloud computing,” Commun. ACM, vol. 53, no. 4, pp. 50–58, 2010.

[3] U. Manber, “Finding similar files in a large file system,” in Proc. USENIX Winter Tech. Conf., 1994, pp. 1–10.

[4] N. T. Spring and D. Wetherall, “A protocol-independent technique for eliminating redundant network traffic,” in Proc. SIGCOMM,

2000, vol. 30, pp. 87–95.

[5] A. Muthitacharoen, B. Chen, and D. Mazières, “A low-bandwidth network file system,” in Proc. SOSP, 2001, pp. 174–187.

[6] E. Lev-Ran, I. Cidon, and I. Z. Ben-Shaul, “Method and apparatus for reducing network traffic over low bandwidth links,” US Patent

7636767, Nov. 2009.

[7] S. Mccanne and M. Demmer, “Content-based segmentation scheme for data compression in storage and transmission including

hierarchical segment representation,” US Patent 6828925, Dec. 2004.

[8] R. Williams, “Method for partitioning a block of data into subblocks and for storing and communicating such subblocks,” US Patent

5990810, Nov. 1999.

[9] Juniper Networks, Sunnyvale, CA, USA, “Application acceleration,” 1996 [Online]. Available: http://www.juniper.net/us/

en/products-services/application-acceleration/

[10] Blue Coat Systems, Sunnyvale, CA, USA, “MACH5,” 1996 [Online]. Available: http://www.bluecoat.com/products/mach5

[11] Expand Networks, Riverbed Technology, San Francisco, CA, USA, “Application acceleration and WAN optimization,” 1998

[Online]. Available: http://www.expand.com/technology/ application-acceleration.aspx

[12] F5, Seattle, WA, USA, “WAN optimization,” 1996 [Online]. Available: http://www.f5.com/solutions/acceleration/wan-optimization/

[13] A. Flint, “The next workplace revolution,” Nov. 2012 [Online]. Available: http://m.theatlanticcities.com/jobs-and-

economy/2012/11/ nextworkplace-revolution/3904/

[14] A. Anand, C. Muthukrishnan, A. Akella, and R. Ramjee, “Redundancy in network traffic: Findings and implications,” in Proc.

SIGMETRICS, 2009, pp. 37–48.

[15] B. Aggarwal, A. Akella, A. Anand, A. Balachandran, P. Chitnis, C. Muthukrishnan, R. Ramjee, and G. Varghese, “EndRE: An end-

system redundancy elimination service for enterprises,” in Proc. NSDI, 2010, pp. 28–28.

[16] “PACK source code,” 2011 [Online]. Available: http://www.eyalzo. com/projects/pack

[17] A. Anand, A. Gupta, A. Akella, S. Seshan, and S. Shenker, “Packet caches on routers: The implications of universal redundant traffic

elimination,” in Proc. SIGCOMM, 2008, pp. 219–230.

[18] A. Anand, V. Sekar, and A. Akella, “SmartRE: An architecture for coordinated network-wide redundancy elimination,” in Proc.

SIGCOMM, 2009, vol. 39, pp. 87–98.

[19] A. Gupta, A. Akella, S. Seshan, S. Shenker, and J. Wang, “Understanding and exploiting network traffic redundancy,” UW-Madison,

Madison, WI, USA, Tech. Rep. 1592, Apr. 2007.

[20] M. Zink, K. Suh, Y. Gu, and J. Kurose, “Watch global, cache local: YouTube network traffic at a campus network—Measurements

and implications,” in Proc. MMCN, 2008, pp. 1–13.

PACK: Prediction-Based Cloud Bandwidth and Cost Reduction System

165 | P a g e

[21] S. Schleimer, D. S. Wilkerson, and A. Aiken, “Winnowing: Local algorithms for document fingerprinting,” in Proc. SIGMOD, 2003,

pp. 76–85.

[22] S. Ihm, K. Park, and V. Pai, “Wide-area network acceleration for the developing world,” in Proc. USENIX ATC, 2010, pp. 18–18.

[23] H. Stevens and C. Pettey, “Gartner says cloud computing will be as influential as e-business,” Gartner Newsroom, Jun. 26, 2008.

[24] H. Abu-Libdeh, L. Princehouse, and H. Weatherspoon, “RACS: A case for cloud storage diversity,” in Proc. SOCC, 2010, pp. 229–

240.

[25] “Dropbox,” 2007 [Online]. Available: http://www.dropbox.com/

[26] E. Allen and C. M. Morris, “Library of Congress and Duracloud launch pilot program using cloud technologies to test perpetual

access to digital content,” News Release, Jul. 2009.

[27] D. Hansen, “GMail filesystem over FUSE,” [Online]. Available: http:// sr71.net/projects/gmailfs/

[28] J.Srinivasan, W.Wei,X.Ma,and T.Yu, “EMFS: Email-basedpersonal cloud storage,” in Proc. NAS, 2011, pp. 248–257.

[29] “Amazon Elastic Compute Cloud (EC2),” [Online]. Available: http:// aws.amazon.com/ec2/

[30] “netfilter/iptables project: Libnetfilter_queue,” Oct. 2005 [Online]. Available: http://www.netfilter.org/projects/libnetfilter_queue

[31] A. Z. Broder, “Some applications of Rabin’s fingerprinting method,” in Sequences II: Methods in Communications, Security, and

Computer Science. New York, NY, USA: Springer-Verlag, 1993, pp. 143–152.

[32] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP selective acknowledgment options,” RFC 2018, 1996.

[33] A. Medina, M. Allman, and S. Floyd, “Measuring the evolution of transport protocols in the internet,” Comput. Commun. Rev., vol.

35 , no. 2, pp. 37–52, 2005.

[34] V. Jacobson, R. Braden, and D. Borman, “TCP extensions for high

