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Abstract: In this paper, we present PACK (Predictive ACKs), a novel end-to-end traffic 

redundancy elimination (TRE) system, designed for cloud computing customers. Cloud-based 

TRE needs to apply a judicious use of cloud resources so that the bandwidth cost reduction 

combined with the additional cost of TRE computation and storage would be optimized. 

PACK’s main advantage is its capability of offloading the cloud-server TRE effort to end 

clients, thus minimizing the processing costs induced by the TRE algorithm. Unlike previous 

solutions, PACK does not require the server to continuously maintain clients’ status. This 

makes PACK very suitable for pervasive computation environments that combine client 

mobility and server migration to maintain cloud elasticity. PACK is based on a novel TRE 

technique, which allows the client to use newly received chunks to identify previously received 

chunk chains, which in turn can be used as reliable predictors to future transmitted chunks. We 

present a fully functional PACK implementation, transparent to all TCP-based applications 

and network devices. Finally, we analyze PACK benefits for cloud users, using traffic traces 

from various sources. 

Index Terms: caching, cloud computing, network optimization, traffic redundancy 
elimination. 

 

I.INTRODUCTION 

 LOUD computing offers its customers an economical and convenient pay-as-you-go service model, known also as 

usage-based pricing [2]. Cloud customers1pay only for the actual use of computing resources, storage, and bandwidth, 

according to their changing needs, utilizing the cloud’s scalable and elastic computational capabilities. In particular, data 

transfer costs (i.e., bandwidth) is an important issue when trying to minimize costs [2]. Consequently, cloud customers, 

applying a judicious use of the cloud’s resources, are motivated to use various traffic reduction techniques, in particular traffic 

redundancy elimination (TRE), for reducing bandwidth costs. 

 Traffic redundancy stems from common end-users’ activities, such as repeatedly accessing, downloading, uploading 

(i.e., backup), distributing, and modifying the same or similar information items (documents, data, Web, and video). TRE is 

used to eliminate the transmission of redundant content and, therefore, to significantly reduce the network cost. In most 

common TRE solutions, both the sender and the receiver examine and compare signatures of data chunks, parsed according to 

the data content, prior to their transmission. When redundant chunks are detected, the sender replaces the transmission of each 

redundant chunk with its strong signature[3]–[5]. Commercial TRE solutions are popular at enterprise networks, and involve 

the deployment of two or more proprietary-protocol, state synchronized middle-boxes at both the intranet entry points of data 

centres and branch offices, eliminating repetitive traffic between them (e.g., Cisco [6], Riverbed [7], Quantum [8], Juniper [9], 

Blue Coat [10], Expand Networks [11], and F5 [12]). 

 While proprietary middle-boxes are popular point solutions within enterprises, they are not as attractive in a cloud 

environment. Cloud providers cannot benefit from a technology whose goal is to reduce customer bandwidth bills, and thus are 

not likely to invest in one. The rise of “on-demand” work spaces, meeting rooms, and work-from-home solutions [13] detaches 

the workers from their offices. In such a dynamic work environment, fixed-point solutions that require a client-side and a 

server-side middle-box pair become ineffective. On the other hand, cloud-side elasticity motivates work distribution among 

servers and migration among data centres. Therefore, it is commonly agreed that a universal, software-based, end-to-end TRE 

is crucial in today’s pervasive environment [14], [15]. This enables the use of a standard protocol stack and makes a TRE 

within end-to-end secured traffic (e.g., SSL) possible. 

 Current end-to-end TRE solutions are sender-based. In the case where the cloud server is the sender, these solutions 

require that the server continuously maintain clients’ status. 

  We show here that cloud elasticity calls for a new TRE solution. First, cloud load balancing and power optimizations 

may lead to a server-side process and data migration environment, in which TRE solutions that require full synchronization 

between the server and the client are hard to accomplish or may lose efficiency due to lost synchronization. Second, the 

popularity of rich media that consume high bandwidth motivates content distribution network (CDN) solutions, in which the 

service point for fixed and mobile users may change dynamically according to the relative service point locations and loads. 
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Moreover, if an end-to-end solution is employed, its additional computational and storage costs at the cloud side should be 

weighed against its bandwidth saving gains. 

 Clearly, a TRE solution that puts most of its computational effort on the cloud side2may turn to be less cost-effective 

than the one that leverages the combined client-side capabilities. Given an end-to-end solution, we have found through our 

experiments that sender-based end-to-end TRE solutions [4], [15] add a considerable load to the servers, which may eradicate 

the cloud cost saving addressed by the TRE in the first place. Our experiments further show that current end-to-end solutions 

also suffer from the requirement to maintain end-to-end synchronization that may result in degraded TRE efficiency. 

 In this paper, we present a novel receiver-based end-to-end TRE solution that relies on the power of predictions to 

eliminate redundant traffic between the cloud and its end-users. In this solution, each receiver observes the incoming stream 

and tries to match its chunks with a previously received chunk chain or a chunk chain of a local file. Using the long-term 

chunks’ metadata information kept locally, the receiver sends to the server predictions that include chunks’ signatures and 

easy-to-verify hints of the sender’s future data. The sender first examines the hint and performs the TRE operation only on a 

hint-match. The purpose of this procedure is to avoid the expensive TRE computation at the sender side in the absence of 

traffic redundancy. When redundancy is detected, the sender then sends to the receiver only the ACKs to the predictions, 

instead of sending the data. 

On the receiver side, we propose a new computationally lightweight chunking (fingerprinting) scheme termed PACK chunking. 

PACK chunking is a new alternative for Rabin fingerprinting traditionally used by RE applications. Experiments show that our 

approach can reach data processing speeds over 3 Gb/s, at least 20% faster than Rabin fingerprinting. 

 Offloading the computational effort from the cloud to a large group of clients forms a load distribution action, as each 

client processes only its TRE part. The receiver-based TRE solution addresses mobility problems common to quasi-mobile 

desktop/ laptops computational environments. One of them is cloud elasticity due to which the servers are dynamically 

relocated around the federated cloud, thus causing clients to interact with multiple changing servers. Another property is IP 

dynamics, which compel roaming users to frequently change IP addresses. In addition to the receiver-based operation, we also 

suggest a hybrid approach, which allows a battery-powered mobile device to shift the TRE computation overhead back to the 

cloud by triggering a sender-based end-to-end TRE similar to [15]. 

 To validate the receiver-based TRE concept, we implemented, tested, and performed realistic experiments with PACK 

within a cloud environment. Our experiments demonstrate a cloud cost reduction achieved at a reasonable client effort while 

gaining additional bandwidth savings at the client side. The implementation code, over 25 000 lines of C and Java, can be 

obtained from [16]. Our implementation utilizes the TCP Options field, supporting all TCP-based applications such as Web, 

video streaming, P2P, e-mail, etc. 

 In addition, we evaluate our solution and compare it to previous end-to-end solutions using terabytes of real video 

traffic consumed by 40 000 distinct clients, captured within an ISP, and traffic obtained in a social network service for over a 

month. We demonstrate that our solution achieves 30% redundancy elimination without significantly affecting the 

computational effort of the sender, resulting in a 20% reduction of the overall cost to the cloud customer. 

 This paper is organized as follows. Section II reviews existing TRE solutions. In Section III, we present our receiver-

based TRE solution and explain the prediction process and the prediction-based TRE mechanism. In Section IV, we present 

optimizations to the receiver-side algorithms. Section V evaluates data redundancy in a cloud and compares PACK to sender-

based TRE. Section VI details our implementation and discusses our experiments and results. 

 

II.RELATED WORK 

 Several TRE techniques have been explored in recent years. A protocol-independent TRE was proposed in [4]. The 

paper describes a packet-level TRE, utilizing the algorithms presented in [3]. 

 Several commercial TRE solutions described in [6] and [7] have combined the sender-based TRE ideas of [4] with the 

algorithmic and implementation approach of [5] along with protocol specific optimizations for middle-boxes solutions. In 

particular, [6] describes how to get away with three-way handshake between the sender and the receiver if a full state 

synchronization is maintained. 

 References [17] and [18] present redundancy-aware routing algorithm. These papers assume that the routers are 

equipped with data caches, and that they search those routes that make a better use of the cached data. 

 A large-scale study of real-life traffic redundancy is presented in [19], [20], and [14]. In the latter, packet-level TRE 

techniques are compared [3],[21]. Our paper builds on their finding that “an end to end redundancy elimination solution, could 

obtain most of the middle-box’s bandwidth savings,” motivating the benefit of low cost software end-to-end solutions. 

 Wanax [22] is a TRE system for the developing world where storage and WAN bandwidth are scarce. It is a software-

based middle-box replacement for the expensive commercial hardware. In this scheme, the sender middle-box holds back the 

TCP stream and sends data signatures to the receiver middle-box. The receiver checks whether the data is found in its local 

cache. Data chunks that are not found in the cache are fetched from the sender middle-box or a nearby receiver middle-box. 

Naturally, such a scheme incurs a three-way-handshake latency for non cached data. 

 End RE [15] is a sender-based end-to-end TRE for enterprise networks. It uses a new chunking scheme that is faster 

than the commonly used Rabin fingerprint, but is restricted to chunks as small as 32–64 B. Unlike PACK, EndRE requires the 

server to maintain a fully and reliably synchronized cache for each client. To adhere with the server’s memory requirements, 

these caches are kept small (around 10 MB per client), making the system inadequate for medium-to-large content or long-term 

redundancy. End RE is server-specific, hence not suitable for a CDN or cloud environment. 
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Fig. 1. From stream to chain. 

 To the best of our knowledge, none of the previous works have addressed the requirements for a cloud-computing-

friendly, end-to-end TRE, which forms PACK’s focus. 

 

III.PACK ALGORITHM 
 For the sake of clarity, we first describe the basic receiver driven operation of the PACK protocol. Several 

enhancements and optimizations are introduced in Section IV. 

 The stream of data received at the PACK receiver is parsed to a sequence of variable-size, content-based signed 

chunks similar to [3] and [5]. The chunks are then compared to the receiver local storage, termed chunk store. If a matching 

chunk is found in the local chunk store, the receiver retrieves the sequence of subsequent chunks, referred to as a chain, by 

traversing the sequence of LRU chunk pointers that are included in the chunks’ metadata. Using the constructed chain, the 

receiver sends a prediction to the sender for the subsequent data. Part of each chunk’s prediction, termed a hint, is an easy-to-

compute function with a small-enough false-positive value, such as the value of the last byte in the predicted data or a byte-

wide XOR checksum of all or selected bytes. The prediction sent by the receiver includes the range of the predicted data, the 

hint, and the signature of the chunk. The sender identifies the predicted range in its buffered data and verifies the hint for that 

range. If the result matches the received hint, it continues to perform the more computationally intensive SHA-1 signature 

operation. Upon a signature match, the sender sends a confirmation message to the receiver, enabling it to copy the matched 

data from its local storage. 

 

A. Receiver Chunk Store 

 PACK uses a new chains scheme, described in Fig. 1, in which chunks are linked to other chunks according to their 

last received order. The PACK receiver maintains a chunk store, which is a large size cache of chunks and their associated 

metadata. Chunk’s metadata includes the chunk’s signature and a (single) pointer to the successive chunk in the last received 

stream containing this chunk. Caching and indexing techniques are employed to efficiently maintain and retrieve the stored 

chunks, their signatures, and the chains formed by traversing the chunk pointers. 

 When the new data are received and parsed to chunks, the receiver computes each chunk’s signature using SHA-1. At 

this point, the chunk and its signature are added to the chunk store. In addition, the metadata of the previously received chunk 

in the same stream is updated to point to the current chunk. 

 The unsynchronized nature of PACK allows the receiver to map each existing file in the local file system to a chain of 

chunks, saving in the chunk store only the metadata associated with the chunks.3Using the latter observation, the receiver can 

also share chunks with peer clients within the same local network utilizing a simple map of network drives. 

The utilization of a small chunk size presents better redundancy elimination when data modifications are fine-grained, such as 

sporadic changes in an HTML page. On the other hand, the use of smaller chunks increases the storage index size, memory 

usage, and magnetic disk seeks. It also increases the transmission overhead of the virtual data exchanged between the client 

and the server. 

 Unlike IP-level TRE solutions that are limited by the IP packet size (  B), PACK operates on TCP streams and 

can therefore handle large chunks and entire chains. Although our design permits each PACK client to use any chunk size, we 

recommend an average chunk size of 8 kB (see Section VI). 

 

B. Receiver Algorithm 

 Upon the arrival of new data, the receiver computes the respective signature for each chunk and looks for a match in 

its local chunk store. If the chunk’s signature is found, the receiver determines whether it is a part of a formerly received chain, 

using the chunks’ metadata. If affirmative, the receiver sends a prediction to the sender for several next expected chain chunks. 

The prediction carries a starting point in the byte stream ( i.e., offset) and the identity of several subsequent chunks ( PRED 

command). 

 Upon a successful prediction, the sender responds with a PRED-ACK confirmation message. Once the PRED-ACK 

message is received and processed, the receiver copies the corresponding data from the chunk store to its TCP input buffers, 

placing it according to the corresponding sequence numbers. At this point, the receiver sends a normal TCP ACK with the next 

expected TCP sequence number. In case the prediction is false, or one or more predicted chunks are already sent, the sender 

continues with normal operation, e.g., sending the raw data, without sending a PRED-ACK message. 
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1. if segment carries payload data then 

2. calculate chunk 

3. if reached chunk boundary then 

4. activate predAttempt() 

5. end if 

6. else if PRED-ACK segment then 

7. process Pred Ack() 

8. activate pred Attempt() 

9. end if 

 

1. if received chunk matches one in chunk store then 

2. if found Chain(chunk) then 

3. prepare PREDs 

4. send single TCP ACK with PREDs according to 

         Options free space 

5. exit 

6. end if 

7. else 

8. store chunk 

9. link chunk to current chain 

10. end if 

 

3. put data in TCP input buffer 

4. end for 

 
C. Sender Algorithm 

 When a sender receives a PRED message from the receiver, it tries to match the received predictions to its buffered 

(yet to be sent) data. For each prediction, the sender determines the corresponding TCP sequence range and verifies the hint. 

Upon a hint match, the sender calculates the more computationally intensive SHA-1 signature for the predicted data range and 

compares the result to the signature received in the PRED message. Note that in case the hint does not match, a 

computationally expansive operation is saved. If the two SHA-1 signatures match, the sender can safely assume that the 

receiver’s prediction is correct. In this case, it replaces the corresponding outgoing buffered data with a PRED-ACK message. 

Fig. 2 illustrates the sender operation using state machines. Fig. 2(a) describes the parsing of a received PRED command. Fig. 

2(b) describes how the sender attempts to match a predicted range to its outgoing data. First, it finds out if this range has been 

already sent or not. In case the range has already been acknowledged, the corresponding prediction is discarded. Otherwise, it 

tries to match the prediction to the data in its outgoing TCP buffers. 

 

D. Wire Protocol 

 In order to conform with existing firewalls and minimize overheads, we use the TCP Options field to carry the PACK 

wire protocol. It is clear that PACK can also be implemented above the TCP level while using similar message types and 

control fields. 

 Fig. 3 illustrates the way the PACK wire protocol operates under the assumption that the data is redundant. First, both 

sides enable the PACK option during the initial TCP handshake by 

 

11. send TCP ACK only  

Proc. 3: processPredAck()  

1.  for all offset PRED-ACK do  
2. read data from chunk store  

Proc. 2: predAttempt()  

Proc. 1:  Receiver Segment Processing  
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Fig. 2. Sender algorithms. (a) Filling the prediction queue. (b) Processing the prediction queue and sending PRED-ACK or raw data. 

 
IV.OPTIMIZATIONS 

 For the sake of clarity, Section III presents the most basic version of the PACK protocol. In this section, we describe 

additional options and optimizations. 

 

A. Adaptive Receiver Virtual Window 

 PACK enables the receiver to locally obtain the sender’s data when a local copy is available, thus eliminating the need 

to send this data through the network. We term the receiver’s fetching of such local data as the reception of virtual data. 

 When the sender transmits a high volume of virtual data, the connection rate may be, to a certain extent, limited by the 

number of predictions sent by the receiver. This, in turn, means that the receiver predictions and the sender confirmations 

should be expedited in order to reach high virtual data rate. For example, in case of a repetitive success in predictions, the 

receiver’s side algorithm may become optimistic and gradually increase the ranges of its predictions, similarly to the TCP rate 

adjustment procedures. 

 PACK enables a large prediction size by either sending several successive PRED commands or by enlarging PRED 

command range to cover several chunks. 

PACK enables the receiver to combine several chunks into a single range, as the sender is not bounded to the anchors 

originally used by the receiver’s data chunking algorithm. The combined range has a new hint and a new signature that is an 

SHA-1 of the concatenated content of the chunks. 

Upon the first chunk match, the receiver sends predictions limited to its initial virtual window. It is likely that, before the 

predictions arrive at the sender, some of the corresponding real data is already transmitted from it. When the real data arrives, 

the receiver can partially confirm its prediction and increase the virtual window. Upon getting PRED-ACK confirmations from 

the sender, the receiver also increases the virtual window. This logic resembles the slow-start part of the TCP rate control 

algorithm. When a mismatch occurs, the receiver switches back to the initial virtual window. 

Proc. 4 describes the advanced algorithm performed at the receiver’s side. The code at lines 2–8 describes PACK behavior 

when a data segment arrives after its prediction was sent and the virtual window is doubled. Proc. 5 describes the reception of a 

successful acknowledgement message (PRED-ACK) from the sender. The receiver reads the data from the local chunk store. It 

then modifies the next byte sequence number to the last byte of the redundant data that has just been read plus one, and sends 

the next TCP ACK, piggybacked with the new prediction. Finally, the virtual window is doubled. 

 

10. if found Chain(chunk) then 

11. {new code for Adaptive} 

12. prepare PREDs according to pred Size 

13. send TCP ACKs with all PREDs 

14. exit 

15. end if 

16. else 

17. store chunk 

18. append chunk to current chain 

19. end if 
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3. put data in TCP input buffer 

4. end for 

5. {new code for Adaptive} 

6. Pred Size Exponent() 

 

 The size increase of the virtual window introduces a tradeoff in case the prediction fails from some point on. The code 

in Proc. 4, line 6, describes the receiver’s behavior when the arriving data does not match the recently sent predictions. The 

new received chunk may, of course, start a new chain match. Following the reception of the data, the receiver reverts to the 

initial virtual window (conforming to the normal TCP receiver window size) until a new match is found in the chunk store. 

Note that even a slight change in the sender’s data, compared to the saved chain, causes the entire prediction range to be sent to 

the receiver as raw data. Hence, using large virtual windows introduces a tradeoff between the potential rate gain and the 

recovery effort in the case of a missed prediction. 

 

B. Cloud Server as a Receiver 

 In a growing trend, cloud storage is becoming a dominant player [23], [24]—from backup and sharing services [25] to 

the American National Library [26], and e-mail services [27], [28]. In many of these services, the cloud is often the receiver of 

the data. 

 If the sending client has no power limitations, PACK can work to save bandwidth on the upstream to the cloud. In 

these cases, the end-user acts as a sender, and the cloud server is the receiver. The PACK algorithm need not change. It does 

require, however, that the cloud server—like any PACK receiver—maintain a chunk store. 

 

C. Hybrid Approach 

 PACK’s receiver-based mode is less efficient if changes in the data are scattered. In this case, the prediction 

sequences are frequently interrupted, which, in turn, forces the sender to revert to raw data transmission until a new match is 

found at the receiver and reported back to the sender. To that end, we present the PACK hybrid mode of operation, described 

in Proc. 6 and Proc. 7. When PACK recognizes a pattern of dispersed changes, it may select to trigger a sender-driven 

approach in the spirit of [4], [6], [7], and [18]. 

 

Proc. 6: Receiver Segment Processing Hybrid—obsoletes 

Proc. 1 

 

1. if segment carries payload data then 

2. calculate chunk 

3. if reached chunk boundary then 

4. activate predAttempt() 

5. {new code for Hybrid} 

6. if detected broken chain then 

7. calcDispersion(255) 

8. else 

9. calcDispersion(0) 

10. end if 

11. end if 

12. else if PRED-ACK segment then 

13. process PredAck() 

14. activate predAttempt() 

20. send TCP ACK only  

Proc. 5: processPredAckAdaptiv e()—obsoletes Proc. 3  

1. for all offset PRED-ACK do  
2. read data from disk  



PACK: Prediction-Based Cloud Bandwidth and Cost Reduction System 

 

162 | P a g e  

 

 

3. put data in TCP input buffer 

4. {new code for Hybrid} 

5. for all chunk  offset do 

6. calcDispersion(0) 

7. end for 

8. end for 

 However, as was explained earlier, we would like to revert to the sender-driven mode with a minimal computational 

and buffering overhead at the server in the steady state. Therefore, our approach is to first evaluate at the receiver the need for 

a sender-driven operation and then to report it back to the sender. At this point, the sender can decide if it has enough 

resources to process a sender-driven TRE for some of its clients. To support this enhancement, an additional command 

(DISPER) is introduced. Using this command, the receiver periodically sends its estimated level of dispersion, ranging from 0 

for long smooth chains, up to 255. 

Table I 

Data And Pack’s Results of 24 H you tube Traffic Trace 

 

 
 

PACK computes the data dispersion value using an exponential smoothing function 

(1) 

is set to 0 when a chain break is detected, and 255 otherwise. where 

 
V.IMPLEMENTATION 

 In this section, we present PACK implementation, its performance analysis, and the projected server costs derived 

from the implementation experiments. 

 Our implementation contains over 25 000 lines of C and Java code. It runs on Linux with Netfilter Queue [30]. Fig. 

10 shows the PACK implementation architecture. At the server side, we use an Intel Core 2 Duo 3 GHz, 2 GB of RAM, and a 

WD1600AAJS SATA drive desktop. The clients laptop machines are based on an Intel Core 2 Duo 2.8 GHz, 3.5 GB of RAM, 

and a WD2500BJKT SATA drive. 

 Our implementation enables the transparent use of the TRE at both the server and the client. PACK receiver–sender 

protocol is embedded in the TCP Options field for low overhead and compatibility with legacy systems along the path. We 

keep the genuine operating systems’ TCP stacks intact, allowing a seamless integration with all applications and protocols 

above TCP. 

 Chunking and indexing are performed only at the client’s side, enabling the clients to decide independently on their 

preferred chunk size. In our implementation, the client uses an average chunk size of 8 kB. We found this size to achieve high 

TRE hit-ratio in the evaluated datasets, while adding only negligible overheads of 0.1% in metadata storage and 0.15% in 

predictions bandwidth. 

 For the experiments held in this section, we generated a workload consisting of Section V datasets: IMAP e-mails, 

HTTP videos, and files downloaded over FTP. The workload was then loaded to the server and consumed by the clients. We 

sampled the machines’ status every second to measure real and virtual traffic volumes and CPU utilization. 

 

A. Server Operational Cost 

 We measured the server performance and cost as a function of the data redundancy level in order to capture the effect 

of the TRE mechanisms in real environment. To isolate the TRE operational cost, we measured the server’s traffic volume and 

CPU utilization at maximal throughput without operating a TRE. We then used these numbers as a reference cost, based on 

present Amazon EC2 [29] pricing. The server operational cost is composed of both the network traffic volume and the CPU 

utilization, as derived from the EC2 pricing. 

15. end if  

Proc. 7: Process PredAckHybrid()—obsoletes Proc. 3  

1. for all offset PRED-ACK do 
2. read data from disk  

is a smoothing   factor.  The  value 
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 We constructed a system consisting of one server and seven clients over a 1-Gb/s network. The server was configured 

to provide a maximal throughput of 50 Mb/s per client. We then measured three different scenarios: a baseline no-TRE 

operation, PACK, and a sender-based TRE similar to EndRE’s Chunk Match [15], referred to as End RE-like. For the End RE-

like case, we accounted for the SHA-1 calculated over the entire outgoing traffic, but did not account for the chunking effort. 

In the case of End RE-like, we made the assumption of unlimited buffers at both the server and client sides to enable the same 

long-term redundancy level and TRE ratio of PACK. 

 Fig. 11 presents the overall processing and networking cost for traffic redundancy, relative to no-TRE operation. As 

the redundancy grows, the PACK server cost decreases due to the bandwidth saved by unsent data. However, the End RE-like 

server does not gain a significant cost reduction since the SHA-1 operations are performed over nonredundant data as well. 

Note that at above 25% redundancy, which is common to all reviewed datasets, the PACK operational cost is at least 20% 

lower than that of End RE-like. 

 

B. PACK Impact on the Client CPU 

 To evaluate the CPU effort imposed by PACK on a client, we measured a random client under a scenario similar to 

the one used for measuring the server’s cost, only this time the cloud server streamed videos at a rate of 9 Mb/s to each client. 

Such a speed throttling is very common in real-time video servers that aim to provide all clients with stable bandwidth for 

smooth view. 

 Table IV summarizes the results. The average PACK-related CPU consumption of a client is less than 4% for 9-Mb/s 

video with 36.4% redundancy. 

 Fig. 12(a) presents the client CPU utilization as a function of the real incoming traffic bandwidth. Since the client 

chunks the arriving data, the CPU utilization grows as more real traffic enters the client’s machine. Fig. 12(b) shows the client 

CPU utilization as a function of the virtual traffic bandwidth. Virtual traffic arrives in the form of prediction approvals from 

the sender and is limited to a rate of 9 Mb/s by the server’s throttling. The approvals save the client the need to chunk data or 

sign the chunks and enable him to send more predictions based on the same chain that was just used successfully. Hence, the 

more redundancy is found, the less CPU utilization incurred by PACK. 

 

Table IV 

Client Cpu Utilization When Streaming 9-Mb/S Video With And Without Pack 

 

 
 

C. Chunking Scheme 
 Our implementation employs a novel computationally lightweight chunking (fingerprinting) scheme, termed PACK 

chunking. The scheme, presented in Proc. 8 and illustrated in Fig. 13, is an XOR-based rolling hash function, tailored for fast 

TRE chunking. Anchors are detected by the mask in line 1 that provides on average 8-kB chunks. The mask, as shown in Fig. 

13, was chosen to consider all the 48 B in the sliding 

 

 
8. end if 

9. end for 
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D. Pack Messages Format 

 In our implementation, we use two currently unused TCP option codes, similar to the ones defined in SACK [32]. The 

first one is an enabling option PACK permitted sent in a SYN segment to indicate that the PACK option can be used after the 

connection is established. The other one is a PACK message that may be sent over an established connection once permission 

has been granted by both parties. A single PACK message, piggybacked on a single TCP packet, is designed to wrap and carry 

multiple PACK commands, as illustrated in Fig. 14. This not only saves message overhead, but also copes with security 

network devices (e.g., firewall) that tend to change TCP options order [33]. Note that most TCP options are only used at the 

TCP initialization period, with several exceptions such as SACK [32] and timestamps [34], [33]. Due to the lack of space, 

additional implementation details are left out and are available in [16]. 

 

VI.CONCLUSION 

 Cloud computing is expected to trigger high demand for TRE solutions as the amount of data exchanged between the 

cloud and its users is expected to dramatically increase. The cloud environment redefines the TRE system requirements, 

making proprietary middle-box solutions inadequate. Consequently, there is a rising need for a TRE solution that reduces the 

cloud’s operational cost while accounting for application latencies, user mobility, and cloud elasticity. 

 In this paper, we have presented PACK, a receiver-based, cloud-friendly, end-to-end TRE that is based on novel 

speculative principles that reduce latency and cloud operational cost. PACK does not require the server to continuously 

maintain clients’ status, thus enabling cloud elasticity and user mobility while preserving long-term redundancy. Moreover, 

PACK is capable of eliminating redundancy based on content arriving to the client from multiple servers without applying a 

three-way handshake. 

 Two interesting future extensions can provide additional benefits to the PACK concept. First, our implementation 

maintains chains by keeping for any chunk only the last observed subsequent chunk in an LRU fashion. An interesting 

extension to this work is the statistical study of chains of chunks that would enable multiple possibilities in both the chunk 

order and the corresponding predictions. The system may also allow making more than one prediction at a time, and it is 

enough that one of them will be correct for successful traffic elimination. A second promising direction is the mode of 

operation optimization of the hybrid sender–receiver approach based on shared decisions derived from receiver’s power or 

server’s cost changes. 
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