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Abstract: The classification and identification of fruits and vegetables through image 

recognition is a significant challenge in modern agriculture, food processing, and retail 

automation. Manual sorting methods are often error-prone, time-consuming, and inefficient for 

large-scale operations, necessitating the development of automated, scalable solutions. This 

study introduces a deep learning–based framework for fruit and vegetable recognition using 

Convolutional Neural Networks (CNNs). A sequential CNN model was designed and trained on 

a publicly available dataset containing thousands of labeled fruit and vegetable images. 

Preprocessing techniques such as resizing, normalization, and data augmentation (rotation, 

flipping, zooming, and shearing) were applied to enhance generalization and mitigate 

overfitting. The model was implemented using TensorFlow and Keras, trained with categorical 

cross-entropy loss, and evaluated using accuracy, precision, recall, and confusion matrix 

analysis. Results indicate that the CNN achieved high classification accuracy, demonstrating its 

effectiveness in distinguishing between visually similar categories of produce. The framework 

shows strong potential for integration into commercial retail systems, automated inventory 

management, and agricultural inspection workflows. Furthermore, this work lays the foundation 

for future enhancements, including expansion to additional produce categories and real-time 

mobile or web-based deployment, thereby contributing to intelligent, AI-driven solutions for 

food quality control and supply chain optimization. 
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I.INTRODUCTION 

Fruits and vegetables form a vital component of human nutrition and global food supply chains, making their 

accurate classification and quality control a priority in agriculture, retail, and logistics. Traditional methods of sorting and 

identifying produce are primarily manual, depending on human workers’ visual inspection and experience. While effective 

in small-scale operations, these approaches are inherently limited by subjectivity, inconsistency, and inefficiency. As the 

demand for food safety and large-scale distribution continues to grow, there is a critical need for automated, reliable, and 

scalable solutions. 

Advancements in artificial intelligence (AI) and deep learning have revolutionized image recognition and 

classification tasks across diverse fields. Convolutional Neural Networks (CNNs), in particular, have demonstrated 

remarkable performance in extracting hierarchical image features, enabling robust classification of complex visual patterns. 

By leveraging such architectures, it has become feasible to design automated systems capable of distinguishing between 

different types of fruits and vegetables, even under varying lighting, orientation, and background conditions. 

This project aims to design and implement a CNN-based deep learning framework that can automatically classify 

images of fruits and vegetables. The system integrates essential stages of dataset preprocessing, feature extraction, model 

training, and performance evaluation. Publicly available datasets containing labeled fruit and vegetable images were utilized, 

ensuring diversity in terms of size, shape, and color variations. Preprocessing steps such as resizing, normalization, and 

augmentation were employed to enhance the robustness and generalization ability of the model. 

The proposed system addresses the limitations of existing manual and rule-based approaches by offering scalability, 

consistency, and high accuracy. Furthermore, it establishes the foundation for potential deployment in agricultural inspection 

systems, smart retail platforms, and automated inventory management workflows. By harnessing deep learning, this research 

contributes to the growing adoption of AI in agriculture and highlights the role of intelligent automation in ensuring 

efficiency, food quality, and supply chain optimization. 
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II.MATERIAL AND METHODS 

The development of an automated fruit and vegetable recognition framework using Convolutional Neural Networks 

(CNNs) required a structured methodology that ensured robustness, reproducibility, and scalability. This section outlines the 

study design, dataset acquisition, preprocessing steps, exploratory data analysis (EDA), model development, training 

strategy, evaluation techniques, and system deployment approach. Each phase was carried out systematically, ensuring that 

insights from earlier stages informed the refinement of subsequent stages. 

 

Study Design 

The research followed a supervised deep learning pipeline for multi-class image classification of fruits and 

vegetables. Unlike traditional approaches that rely on manual inspection or barcode-based identification, this study employed 

CNNs to extract discriminative features directly from image data. The pipeline consisted of: 

1. Dataset collection from publicly available repositories. 

2. Preprocessing of raw images to standardize size, scale, and quality. 

3. Data augmentation to improve generalization and prevent overfitting. 

4. Model development using a sequential CNN architecture. 

5. Training and validation using appropriate hyperparameters. 

6. Evaluation through quantitative metrics such as accuracy, precision, and recall. 

7. Deployment considerations for real-world use cases in agriculture and retail. 

This structured design ensured that the system was not only accurate in controlled environments but also scalable 

and adaptable for practical applications. 

 

Data Acquisition 

The dataset was sourced from a publicly available Kaggle fruit and vegetable image dataset, which provides 

structured folders for training, validation, and testing. The dataset comprised thousands of labeled images representing 

multiple categories of fruits and vegetables. Images varied in orientation, size, lighting, and background, ensuring diversity 

for robust model training. 

● Training Set (70%) – Used to learn feature representations. 

● Validation Set (15%) – Used to tune hyperparameters and implement early stopping. 

● Test Set (15%) – Used for unbiased performance evaluation. 

This distribution aligned with best practices in machine learning, providing sufficient samples for both learning and 

generalization assessment. 

 

Data Preprocessing 

Image preprocessing was a critical step to enhance the dataset’s quality and make it suitable for CNN-based training. 

The following techniques were applied: 

1. Resizing and Normalization 
○ All images were resized to 150 × 150 pixels to maintain consistency. 

○ Pixel intensity values were normalized to a [0,1] range, ensuring uniform scaling and stable training. 

 

2. Data Augmentation 
○ To artificially expand the dataset and increase robustness, augmentation techniques were applied: 

■ Random rotations 

■ Horizontal and vertical flipping 

■ Zooming and shearing 

■ Brightness adjustments 

○ These transformations ensured that the model could generalize to unseen variations in fruit and vegetable appearances. 

 

3. Class Balance Adjustment 
○ Augmentation was also applied selectively to underrepresented categories, mitigating potential class imbalance. 

Through these steps, the dataset became standardized, balanced, and representative of real-world conditions. 

 

Exploratory Data Analysis (EDA) 

Before model development, exploratory analysis was performed to understand dataset characteristics. 

● Category Distribution: Histograms revealed the number of samples per class, highlighting imbalance in certain fruit 

categories. 

● Color and Texture Features: Analysis confirmed that fruits and vegetables exhibited distinctive color and surface 

patterns, suitable for CNN-based classification. 

● Sample Visualization: Random samples were visualized to assess variability in background and lighting, reaffirming the 

need for augmentation. 

EDA validated that the dataset contained sufficient discriminative features for CNN-based learning. 

http://www.fdrpjournals.org/ijire
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Model Development 

A Sequential CNN model was designed using TensorFlow and Keras. The architecture included: 

● Multiple convolutional layers for feature extraction. 

● Pooling layers to reduce spatial dimensions and computation. 

● Dropout layers to minimize overfitting. 

● Fully connected dense layers for classification. Final softmax output layer for multi-class predictions. 

This architecture was selected because of its proven effectiveness in image classification tasks while maintaining 

computational efficiency. 

 

Training Strategy and Hyperparameter Tuning 

Training was conducted on GPU-enabled hardware for faster convergence. Key parameters included: 

● Optimizer: Adam optimizer with learning rate = 0.001. 

● Loss Function: Categorical Cross-Entropy. 

● Batch Size: 32. 

● Epochs: 50, with early stopping after no improvement for 5 consecutive epochs. 

● Learning Rate Scheduling: Reduce-on-plateau strategy for adaptive learning. 

Hyperparameter tuning was performed using grid search to optimize dropout rates, learning rate, and batch size. 

 

Evaluation Metrics 

To ensure a holistic evaluation of the model, the following metrics were applied: 

● Accuracy – Percentage of correctly classified samples. 

● Precision – Proportion of predicted positives that are true positives. 

● Recall (Sensitivity) – Proportion of actual positives correctly classified. 

● F1-Score – Harmonic mean of precision and recall. 

● Confusion Matrix – Breakdown of predictions across categories. 

These metrics provided insights into both overall performance and class-specific strengths and weaknesses. 

 

System Deployment 

The trained model was integrated into a deployment-ready framework. A lightweight interface was designed using 

Streamlit, allowing users to upload fruit or vegetable images and obtain real-time predictions. 

 

Features of the deployment framework included: 

● Prediction Results – Output probabilities for each category. 

● Visualization Tools – Graphs for training/validation accuracy and confusion matrix results. 

● Scalability – Compatibility with web or mobile applications for agricultural or retail usage. 

This ensured that the research could move beyond theoretical analysis and serve practical, real-world applications. 

 

III.RESULT 

A. Data Preprocessing Outcomes 

Preprocessing significantly improved dataset uniformity and quality, making it suitable for deep learning training. 

1. Resizing & Normalization – All images were standardized to 150 × 150 pixels, ensuring input compatibility across the 

model. Normalizing pixel values to the range [0,1] stabilized training and prevented dominance of higher-intensity values. 

2. Noise Reduction – Although most images were clean, preprocessing filters minimized background variation, ensuring 

consistency across categories. 

3. Data Augmentation – Techniques such as rotation, horizontal/vertical flipping, zooming, and shearing expanded the 

dataset size by nearly threefold, improving model robustness against orientation, lighting, and positional variations. 

4. Class Balance – Augmentation of underrepresented categories ensured better class balance, reducing the risk of bias 

toward majority classes.These steps created a high-quality, balanced dataset, which directly contributed to improved 

generalization during training. 

 

B. Model Training and Performance 

The CNN model was trained using TensorFlow and Keras on a GPU-enabled system. Training converged within 

~40 epochs, with early stopping applied to prevent overfitting. 

Key performance metrics on the test dataset: 

- Accuracy: 95.8% 

- Precision: 0.94 

- Recall: 0.93 

- F1-Score: 0.935 

The high accuracy and F1-score indicate that the CNN was effective in learning discriminative features across 
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multiple fruit and vegetable categories. 

 

C. Visualization and Graphical Analysis 

Several graphical outputs were generated to evaluate model performance: 

1. Training vs. Validation Accuracy – Accuracy improved steadily across epochs, with minimal divergence between 

training and validation curves. 

2. Loss Curves – Both training and validation loss decreased consistently, plateauing near convergence. 

3. Confusion Matrix – The confusion matrix revealed strong classification performance across most categories. 

Misclassifications occurred mainly between visually similar items. 

4. ROC Curves (Class-wise) – ROC curves indicated high discriminative ability across categories, with most classes 

achieving an AUC > 0.95. 

 

D. Error Analysis 

Despite strong performance, some misclassifications were observed: 

- False Positives – Cases where one fruit was incorrectly labeled as another with similar shape or color. 

- False Negatives – Images captured under poor lighting or with partial occlusion led to missed detections. 

- Complex Backgrounds – Certain test samples contained cluttered or non-uniform backgrounds, which confused the model. 

These errors suggest that further augmentation and background filtering techniques could enhance accuracy. 

 

E. Feature Importance and Interpretability 

To enhance transparency, Grad-CAM (Gradient-weighted Class Activation Mapping) was applied: 

- For apples, the model highlighted round contours and red surface textures. 

- For leafy vegetables like spinach, the model focused on leaf venation and green intensity patterns. 

- Misclassifications often revealed attention shifts to background areas rather than the fruit/vegetable itself. 

This interpretability confirmed that the CNN relied on biologically meaningful features rather than arbitrary patterns. 

 

F. Comparative Results 

 

Model Accuracy Precision Recall F1-Score 

Logistic Regression 82.3% 0.79 0.76 0.775 

VGG16 (Transfer Learning) 92.7% 0.90 0.89 0.895 

ResNet50 (Transfer Learning) 94.5% 0.93 0.92 0.925 

Proposed CNN Model 95.8% 0.94 0.93 0.935 

 

G. Summary of Results 

1.Preprocessing improved dataset quality and corrected class imbalance. 

2. The CNN achieved 95.8% accuracy, demonstrating robust classification capability. 

3. Visualization confirmed effective convergence with minimal overfitting. 

4. Error analysis revealed challenges with visually similar items and cluttered backgrounds. 

5. Grad-CAM analysis verified that the CNN learned meaningful fruit/vegetable features. 

6.  Comparative analysis showed superior performance of the CNN over classical ML models and competitive results with 

transfer learning approaches. 

 

IV.DISCUSSION 

A. Comparative Insights 

The proposed CNN-based system for fruit and vegetable recognition demonstrates clear advantages over traditional 

manual classification methods and earlier computational approaches. Manual inspection is often subjective, labor-intensive, 

and inconsistent, while conventional rule-based systems lack adaptability to real-world variability. In contrast, the CNN 

model achieved an accuracy of 95.8%, significantly outperforming classical machine learning models such as Logistic 

Regression, which recorded 82.3%. Even when compared with deeper transfer learning models such as VGG16 and 

ResNet50, the proposed architecture showed competitive or superior results, balancing computational efficiency with 

accuracy. These findings validate the suitability of CNNs for agricultural and retail automation applications. 

 

B. Strengths of the Proposed System 

The strength of the system lies not only in its accuracy but also in its robustness and adaptability. Through 
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preprocessing and augmentation, the model was trained to recognize produce under varying lighting conditions, orientations, 

and backgrounds. The use of Grad-CAM visualization enhanced interpretability, allowing users to understand the features 

contributing to model decisions. This transparency fosters trust in the system when integrated into agricultural inspection or 

retail environments. Furthermore, the relatively lightweight design ensures that the framework can be scaled for both 

industrial-level deployment and lightweight mobile applications, making it versatile for diverse use cases. 

 

C. Limitations of the Study 

Despite strong results, the study presents certain limitations. The dataset, although augmented, remains constrained 

to specific classes of fruits and vegetables, which may not fully represent global diversity. Some misclassifications occurred 

in visually similar categories such as apples versus tomatoes, or cucumbers versus zucchinis, indicating the need for more 

refined feature extraction. Additionally, performance in cluttered or complex backgrounds was less reliable, suggesting the 

potential benefit of background segmentation techniques. Another limitation is computational dependency, as GPU support 

significantly reduced training time, which may pose a challenge in low-resource environments. 

D. Implications for Practice 

The implications of this system for agriculture and retail are substantial. Automated recognition can streamline 

supply chain management, quality control, and retail checkout systems, reducing human labor and error rates. In agricultural 

settings, the system can support farmers by enabling rapid and objective classification of harvested produce, improving both 

quality assurance and market readiness. In retail environments, the model can be integrated into self-checkout systems, 

allowing customers to scan fruits and vegetables without barcodes. Furthermore, the transparent decision-making provided 

by Grad-CAM visualizations ensures that stakeholders maintain confidence in AI-assisted classification. 

 

E. Future Directions 

Future research should focus on expanding the dataset to include a broader variety of fruits and vegetables from diverse 

regions, captured under real-world conditions. Incorporating advanced architectures such as ResNet101 or Vision 

Transformers could improve feature extraction and classification accuracy. Additionally, combining CNNs with object 

detection algorithms like YOLO or Faster R-CNN would allow not only classification but also localization of produce within 

complex backgrounds. Deployment on mobile and edge devices should be further optimized to enhance accessibility in rural 

and resource-constrained areas. Finally, integrating the system with supply chain management platforms could provide end-

to-end automation from farm to retail. 

 

F. Summary of Discussion 

In summary, the discussion highlights the effectiveness of CNNs in fruit and vegetable recognition, their strengths in 

accuracy, robustness, and interpretability, as well as the limitations concerning dataset diversity and background complexity. 

The system offers significant implications for agriculture and retail, enabling automation and improving efficiency. With 

further research and refinement, particularly in expanding datasets and enhancing real-time deployment, this approach can 

become a vital contribution to AI-driven food quality control and retail automation. 

 

V.CONCLUSION 

This research has demonstrated the successful application of Convolutional Neural Networks (CNNs) for automated 

fruit and vegetable image recognition, addressing the limitations of traditional manual and rule-based classification methods. 

By employing systematic preprocessing, including resizing, normalization, and augmentation, coupled with a carefully 

designed CNN architecture, the system achieved a high accuracy of 95.8% on the test dataset. These results validate the 

capability of CNN-based models to accurately capture discriminative features such as shape, color, and texture for reliable 

produce classification. 

The study’s findings underscore the transformative potential of deep learning in agriculture and retail automation. 

The proposed framework offers significant improvements in efficiency, scalability, and accuracy compared to manual sorting 

and classical machine learning approaches. The interpretability of model predictions using Grad-CAM further enhances 

transparency and trust, making the system practical for real-world integration. 

However, the research also revealed certain limitations, particularly in handling visually similar categories and 

complex background environments. These limitations highlight opportunities for refinement, such as incorporating more 

diverse datasets, employing advanced architectures, and integrating background segmentation techniques. 

Looking forward, the proposed system can be extended to include additional fruit and vegetable categories, real-

time detection capabilities, and deployment on mobile or edge devices for practical use in both agricultural fields and retail 

environments. Such advancements will not only optimize food quality control and supply chain processes but also contribute 

to the broader adoption of intelligent AI-driven systems in agriculture and commerce. 

In conclusion, this work establishes a strong foundation for future research in food recognition systems, bridging 

the gap between AI innovation and real-world agricultural and retail challenges. By advancing automated classification 

technologies, it paves the way toward sustainable, efficient, and scalable solutions that align with the growing global demand 

for intelligent food management. 
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